Thursday, November 3, 2011

Một câu lượng giác trong đề thi Casio

Giải phương trình:
$latex 2\sin x+4\cos x+2\cos 2x=5$
$latex \Leftrightarrow 2\sin x+4\cos x+4{{\cos }^{2}}x=7\,\,\,(*)$
Ta dễ thấy $latex x=\pi $ không phải là nghiệm của (*).
Ta đặt $latex t=\tan \frac{x}{2}\Rightarrow \sin x=\frac{2t}{1+{{t}^{2}}};\cos x=\frac{1-{{t}^{2}}}{1+{{t}^{2}}}$
$latex (*)\Leftrightarrow 2\frac{2t}{1+{{t}^{2}}}+4\frac{1-{{t}^{2}}}{1+{{t}^{2}}}+4{{\left( \frac{1-{{t}^{2}}}{1+{{t}^{2}}} \right)}^{2}}=7$
$latex \Leftrightarrow 7{{t}^{4}}-4{{t}^{3}}+22{{t}^{2}}-4t-1=0$
Đặt $latex f(t)=7{{t}^{4}}-4{{t}^{3}}+22{{t}^{2}}-4t-1$
$latex \Rightarrow f'(t)=28{{t}^{3}}-12{{t}^{2}}+44t-4$
Ta dùng máy tính Casio giải, thấy $latex f'(t)=0$ chỉ có 1 nghiệm thực, suy ra f(t)=0 có nhiều nhất là 2 nghiệm thực.
Dùng lệnh Shift Solve để giải, ta tính được:
$latex {{t}_{1}}\approx -0.139534911\Leftrightarrow {{x}_{1}}\approx -0.2772795278+k2\pi $
$latex {{t}_{2}}\approx 0.3285208647\Leftrightarrow {{x}_{2}}\approx 0.6348261953+k2\pi $
Trong đề thi yêu cầu làm tròn tới đâu thì làm tới đó là xong.

No comments:

Post a Comment

Trong mục hồ sơ, bạn có thể chọn "Ẩn danh" để gửi bình luận của mỗi bài viết.

Bài đăng nổi bật

Phần mềm giả lập Casio Fx 880BTG (Không cần thay đổi địa chỉ MAC)

Phần mềm giả lập máy tính Casio Fx 880BTG, không cần thay đổi địa chỉ MAC. Thầy Cô tải về tham khảo và hướng dẫn cho học sinh của mình. Link...

Popular Posts