Thứ Năm, 17 tháng 11, 2011

Tìm giao tuyến của hai mặt phẳng (cách 1)

Dạng Toán: Tìm giao tuyến của hai mặt phẳng


PHƯƠNG PHÁP:
- Tìm 2 điểm chung của hai mặt phẳng.
- Đường thẳng qua hai điểm chung đó chính là giao tuyến.
Ví dụ 1: Cho hình chóp tứ  giác S.ABCD. Tìm giao tuyến của hai mặt phẳng (SAC) và (SBD)

Giải:

Ta thấy S là điểm chung của (SAC) và (SBD)

Gọi $latex O=AB\cap BD$

$latex \Rightarrow O\in AC\subset (SAC)$

$latex \Rightarrow O\in BD\subset (SBD)$

Vậy O là điểm chung thứ hai của (SAC) và (SBD)

Nên giao tuyến là đường thẳng SO.

Còn đây là hình có màu dễ nhìn



Ví dụ 2: Cho hình tứ diện ABCD. Gọi M, N lần lượt là trung điểm của cạnh AB, AD. P là một điểm thuộc cạnh AC sao cho AP = 2PC. Hãy tìm giao tuyến của mặt phẳng (MNP) và (BCD)

Giải:

Do AP=2PC nên MP không song song BC và NP không song song DC nên kéo dài chúng cắt nhau.

Gọi $latex F=MP\cap BC$
Ta có:
$latex F\in MP\subset (MNP)$
$latex F\in BC\subset (BCD)$

Nên F là điểm chung của (MNP) và (BCD)

Tương tự, gọi $latex E=NP\cap DC$
Ta cũng có E là điểm chung thứ hai.

Vậy giao tuyến là đường EF

Hình sau đây được tô màu hai mặt phẳng:


Ở cách này, ta chú ý đi tìm 2 điểm chung, thông thương điểm chung thứ nhất rất dễ nhận thấy, còn điểm chung thứ hai, ta cần để ý có hai đường thẳng nào đồng phẳng và không song song, kéo dài ra chúng sẽ cắt nhau tại một điểm nào đó.

Không có nhận xét nào:

Đăng nhận xét

Trong mục hồ sơ, bạn có thể chọn "Ẩn danh" để gửi bình luận của mỗi bài viết.

Đề thi học sinh giỏi Toán Kiên Giang 2018 (thi tháng 3 13/03/2018)

Đề thi học sinh giỏi Toán 2018 của tỉnh Kiên Giang (thi vào ngày 13/03/2018) Đề thi học sinh giỏi Toán 11 tỉnh Kiên Giang năm 2018 ...